603 research outputs found

    A Stress/Displacement Virtual Element Method for Plane Elasticity Problems

    Full text link
    The numerical approximation of 2D elasticity problems is considered, in the framework of the small strain theory and in connection with the mixed Hellinger-Reissner variational formulation. A low-order Virtual Element Method (VEM) with a-priori symmetric stresses is proposed. Several numerical tests are provided, along with a rigorous stability and convergence analysis

    Ultraluminous X-ray Sources forming in low metallicity natal environments

    Get PDF
    In the last few years multiwavelength observations have boosted our understanding of Ultraluminous X-ray Sources (ULXs). Yet, the most fundamental questions on ULXs still remain to be definitively answered: do they contain stellar or intermediate mass black holes? How do they form? We investigate the possibility that the black holes hosted in ULXs originate from massive (40-120 M⊙M_\odot) stars in low metallicity natal environments. Such black holes have a typical mass in the range ∼30−90M⊙\sim 30-90 M_\odot and may account for the properties of bright (above ∼1040\sim 10^{40} erg s−1^{-1}) ULXs. More than ∼105\sim 10^5 massive black holes might have been generated in this way in the metal poor Cartwheel galaxy during the last 10710^7 years and might power most of the ULXs observed in it. Support to our interpretation comes from NGC 1313 X-2, the first ULX with a tentative identification of the orbital period in the optical band, for which binary evolution calculations show that the system is most likely made by a massive donor dumping matter on a 50−100M⊙50-100 M_\odot black hole.Comment: 4 pages. To appear in the Proceedings of the Conference "X-Ray Astronomy 2009: Present Status, Multiwavelength Approach and Future Perspectives", Bologna, Italy, September 2009, Eds. A. Comastri, M. Cappi, L. Angelini, 2010 AIP (in press)

    Weighing the black holes in ultraluminous X-ray sources through timing

    Full text link
    We describe a new method to estimate the mass of black holes in Ultraluminous X-ray Sources (ULXs). The method is based on the recently discovered ``variability plane'', populated by Galactic stellar-mass black-hole candidates (BHCs) and supermassive active galactic nuclei (AGNs), in the parameter space defined by the black-hole mass, accretion rate and characteristic frequency. We apply this method to the two ULXs from which low-frequency quasi-periodic oscillations have been discovered, M82 X-1 and NGC 5408 X-1. For both sources we obtain a black-hole mass in the range 100~1300 Msun, thus providing evidence for these two sources to host an intermediate-mass black hole.Comment: 5 pages, 2 figures, Accepted by MNRA

    Quantitative characterisation of deltaic and subaqueous clinoforms

    Get PDF
    AbstractClinoforms are ubiquitous deltaic, shallow-marine and continental-margin depositional morphologies, occurring over a range of spatial scales (1–104m in height). Up to four types of progressively larger-scale clinoforms may prograde synchronously along shoreline-to-abyssal plain transects, albeit at very different rates. Paired subaerial and subaqueous delta clinoforms (or ‘delta-scale compound clinoforms’), in particular, constitute a hitherto overlooked depositional model for ancient shallow-marine sandbodies. The topset-to-foreset rollovers of subaqueous deltas are developed at up to 60m water depths, such that ancient delta-scale clinoforms should not be assumed to record the position of ancient shorelines, even if they are sandstone-rich.This study analyses a large dataset of modern and ancient delta-scale, shelf-prism- and continental-margin-scale clinoforms, in order to characterise diagnostic features of different clinoform systems, and particularly of delta-scale subaqueous clinoforms. Such diagnostic criteria allow different clinoform types and their dominant grain-size characteristics to be interpreted in seismic reflection and/or sedimentological data, and prove that all clinoforms are subject to similar physical laws.The examined dataset demonstrates that progressively larger scale clinoforms are deposited in increasingly deeper waters, over progressively larger time spans. Consequently, depositional flux, sedimentation and progradation rates of continental-margin clinoforms are up to 4–6 orders of magnitude lower than those of deltas. For all clinoform types, due to strong statistical correlations between these parameters, it is now possible to calculate clinoform paleobathymetries once clinoform heights, age spans or progradation rates have been constrained.Muddy and sandy delta-scale subaqueous clinoforms show many different features, but all share four characteristics. (1) They are formed during relative sea-level stillstands (e.g., Late Holocene); (2) their stratigraphic architecture and facies character are dominated by basinal processes, and are quite uniform; (3) their plan-view morphology is shore-parallel and laterally extensive; (4) their sigmoidal cross-sectional geometry contrasts with the oblique profiles of most subaerial deltas. Holocene-age, delta-scale, sand-prone subaqueous clinoforms occur on steep (≥0.26°) and narrow (5–32km) shelves, at typical distances of 0.6–7.2km from the shoreline break. That contrasts with mud-prone subaqueous deltas, which form clinoforms on gently-sloping (0.01–0.38°), wide (23–376km) shelves, at usual distances of 7.5–125km from the shoreline. Delta-scale sand-prone subaqueous clinoforms have diagnostically steep foresets (0.7–23°). Similarly steep gradients were observed in much larger shelf-prism- and continental-margin-scale clinoforms. Gentler foreset gradients are shown by sand-prone subaerial deltas (0.1–2.7°), and mud-prone subaqueous and subaerial deltas (0.03–1.50°). Due to the lack of connections with river mouths, Holocene delta-scale sand-prone subaqueous clinoform deposits have progradation rates (1–5×102km/Myr) and unit-width depositional flux (1–15km2/Myr) that are up to 3–4 and 2–3 orders of magnitude lower, respectively, than age-equivalent input-dominated subaerial deltas and muddy subaqueous deltas. Lower progradation/aggradation ratios are reflected in a larger spread of clinoform trajectory angles (from −0.4° to +3.5°) than the very low values displayed by age-equivalent subaerial and muddy subaqueous deltas.As slowly prograding, steep, sigmoidal clinoforms are strongly suggestive of sand-prone subaqueous deltas, the Sognefjord Formation and Bridport Sand are likely Jurassic examples of this clinoform type, and host hydrocarbon reservoirs. In contrast, the Campanian Blackhawk Formation is an outcrop example of delta-scale compound clinoforms with a muddy subaqueous component

    Lighthouses with two lights: burst oscillations from the accretion-powered millisecond pulsars

    Get PDF
    The key contribution of the discovery of nuclear-powered pulsations from the accretion-powered millisecond pulsars (AMPs) has been the establishment of burst oscillation frequency as a reliable proxy for stellar spin rate. This has doubled the sample of rapidly-rotating accreting neutron stars and revealed the unexpected absence of any stars rotating near the break-up limit. The resulting `braking problem' is now a major concern for theorists, particularly given the possible role of gravitational wave emission in limiting spin. This, however, is not the only area where burst oscillations from the AMPs are having an impact. Burst oscillation timing is developing into a promising technique for verifying the level of spin variability in the AMPs (a topic of considerable debate). These sources also provide unique input to our efforts to understand the still-elusive burst oscillation mechanism. This is because they are the only stars where we can reliably gauge the role of uneven fuel deposition and, of course, the magnetic field.Comment: Invited review, to appear in the proceedings of the workshop 'A decade of accreting millisecond x-ray pulsars' (Amsterdam, April 2008

    The pulse profile and spin evolution of the accreting pulsar in Terzan 5, IGR J17480-2446, during its 2010 outburst

    Get PDF
    (abridged) We analyse the spectral and pulse properties of the 11 Hz transient accreting pulsar, IGR J17480-2446, in the globular cluster Terzan 5, considering all the available RXTE, Swift and INTEGRAL observations performed between October and November, 2010. By measuring the pulse phase evolution we conclude that the NS spun up at an average rate of =1.48(2)E-12 Hz/s, compatible with the accretion of the Keplerian angular momentum of matter at the inner disc boundary. Similar to other accreting pulsars, the stability of the pulse phases determined by using the second harmonic component is higher than that of the phases based on the fundamental frequency. Under the assumption that the second harmonic is a good tracer of the neutron star spin frequency, we successfully model its evolution in terms of a luminosity dependent accretion torque. If the NS accretes the specific Keplerian angular momentum of the in-flowing matter, we estimate the inner disc radius to lie between 47 and 93 km when the luminosity attains its peak value. Smaller values are obtained if the interaction between the magnetic field lines and the plasma in the disc is considered. The phase-averaged spectrum is described by thermal Comptonization of photons with energy of ~1 keV. A hard to soft state transition is observed during the outburst rise. The Comptonized spectrum evolves from a Comptonizing cloud at an electron temperature of ~20 keV towards an optically denser cloud at kT_e~3 keV. At the same time, the pulse amplitude decreases from 27% to few per cent and becomes strongly energy dependent. We discuss various possibilities to explain such a behaviour, proposing that at large accretion luminosities a significant fraction of the in-falling matter is not channelled towards the magnetic poles, but rather accretes more evenly onto the NS surface.Comment: To appear in MNRA

    Codes and standards on computational wind engineering for structural design: State of art and recent trends

    Get PDF
    This paper first provides a wide overview about the design codes and standards covering the use of Computational Wind Engineering / Computational Fluid Dynamics (CWE/CFD) for wind-sensitive structures and built environment. Second, the paper sets out the basic assumptions and underlying concepts of the new Annex T "Simulations by Computational Fluid Dynamics (CFD/CWE)" of the revised version "Guide for the assessment of wind actions and effects on structures" issued by the Advisory Committee on Technical Recommendations for Constructions of the Italian National Research Council in February 2019 and drafted by the members of the Special Interest Group on Computational Wind Engineering of the Italian Association for Wind Engineering (ANIV-CWE). The same group is currently advising UNI CT021/SC1 in supporting the drafting of the new Annex K - "Derivation of design parameters from wind tunnel tests and numerical simulations" of the revised Eurocode 1: Actions on structures - Part 1-4: General actions - Wind actions. Finally, the paper outlines the subjects most open to development at the technical and applicative level
    • …
    corecore